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Physics Department, Carnegie-Mellon University, Pittsburgh, PA 1521 3, USA 

Received 3 February 1982 

Abstract. The Migdal-Kadanoff real-space renormalisation group scheme applied to the 
king and classical XY (and probably other) ferromagnetic models yields an infinite 
susceptibility at all temperatures above the critical temperature for a hypercubic lattice of 
dimension d z 2. 

The renormalisation group scheme introduced by Migdal(l975) and further developed 
by Kadanoff (1976) has been applied to a large number of problems of phase transitions 
on lattices. (See, for example, Berker et a1 (1978), Kaufman et a1 (1981), Yeomans 
and Fisher (1981), and additional references given in these papers.) 

We wish to point out that this scheme leads to singularities in the free energy as 
a function of magnetic field h at h = 0 at all temperatures above the critical temperature 
for certain ferromagnetic lattice models. Such behaviour is decidedly unphysical, and 
it can be shown rigorously (Israel 1976) that for at least some of these models (on a 
Bravais lattice), the free energy is analytic in h near h = O  at sufficiently high tem- 
peratures. 

From the viewpoint of the standard renormalisation group analysis, the singularity 
in question arises from the fact that the infinite-temperature (zero interaction) fixed 
point is unstable with respect to flows towards fixed points at h = fa, and indeed the 
form of the singularity is given correctly by the usual analysis (Niemeijer and Van 
Leeuwen 1976). However, the existence of an unstable fixed point is, in itself, no 
guarantee that a singularity actually occurs, since the amplitude of the singular term 
may in fact vanish. For examples, see Kaufman et a1 (1981) and Nelson and Fisher 
(1975). In the case of the Migdal-Kadanoff scheme, the fact that the recursion 
equations are exact for a model on a somewhat unphysical but nonetheless well defined 
‘hierarchical lattice’ (Berker and Ostlund 1979, Bleher and Zalys 1979, Kaufman and 
Griffiths 1981) makes it possible to prove the existence of a singularity in the case of 
the Ising and classical XY models. The source of the singularity can, in addition, be 
traced to the peculiar geometrical properties of the corresponding hierarchical lattice. 

As an example, consider the Migdal-Kadanoff scheme for an king model in d = 2 
dimensions with a linear scale change of b = 2. The corresponding ‘diamond hierar- 
chical lattice’ is generated iteratively by assembling four zero-order or primitive bonds, 
figure l(a) to form a diamond ( b )  or bond of order 1. Four of these are then assembled 
in an identical manner, figure l(c), to form a diamond of diamonds or bond of order 
2, and so on ad infinitum. An Ising spin ui = f 1 is associated with the ith vertex, 
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i f f )  16) ( C )  

Figure 1. Construction of the diamond hierarchical lattice. 

and the dimensionless Hamiltonian is given by 

with the sum over all pairs of sites at the opposite ends of primitive bonds. 
The iteration procedure for calculating the partition function consists in successively 

summing the Boltzmann weight over the spins at sites of coordination number 2, 4, 
8 , .  . .. At each stage one obtains an effective Hamiltonian of the type (1)  for the 
remaining spins. The resulting transformation has three fixed points on the h = 0, 
J 3 0 axis: J = CD (zero temperature), J = J, (critical point) and J = 0 (infinite tem- 
perature). The last is a sink for flows originating on the J axis for J C J,, but is unstable 
with respect to flows along the h axis to the J = 0, h = fa fixed points. 

The case J = 0 (a decoupled system) is easily analysed. The dimensionless free 
energy f per bond is given by the uniformly convergent series 

CO 

f ( h )  = 2 4-" ln(2 cosh 2"h) 
n = l  

and thus the susceptibility for h # 0 by 

An elementary analysis shows that x exhibits a logarithmic divergence as h goes to zero: 

x ( h )  = -2(ln(hl)/ln 2+0(1 ) .  (4) 

We note in passing that this singularity arises from the classical Yang and Lee (1952) 
mechanism of zeros of the partition function on the imaginary h axis 'pinching' the 
origin in the thermodynamic limit. Indeed, the dense set of zeros on the imaginary 
axis produces a natural boundary for the analytic function f ( h )  in the half plane 
Re(h) 2 0, somewhat reminiscent of the situation in random ferromagnets (Griffiths 
1969). 

For J > 0 (i.e. finite temperature) we have been unable to carry out a corresponding 
analysis in the complex h plane. However, the divergence of ,y at h = 0 for all J C J, 
follows at once from the GKS inequalities (Griffiths 1972): for any h > 0 the magnetisa- 
tion can only increase as J increases. Note that this argument makes essential use of 
the fact that the Migdal-Kadanoff scheme is 'realisable' on a specific lattice to which 
standard inequalities can be applied; a similar statement would not be possible for 
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an arbitrary approximate renormalisation group scheme. A more involved analysis 
(of which we shall not present the details) shows that the singularity continues to be 
logarithmic as h + 0 for J between 0 and J,. 

The hierarchical lattice also provides insight as to the source of the unphysical 
divergent susceptibility. A Hamiltonian of the form (1) provides a magnetic field of 
magnitude 4h at a site of coordination number 4, and on the hierarchical lattice 4 is 
unbounded, though the number of sites with high coordinate number is relatively 
small. This observation suggests a remedy for the infinite x :  let the magnetic field be 
applied only to sites with the minimum coordination of q = 2. While this remedy 
works at infinite temperature (J = 0), it fails for J > 0, because the very first iteration 
of the usual renormalisation procedure produces a finite effective field at the ends of 
each bond of order 1. Consequently the logarithmic divergence of x is again present 
for 0 < J < J,, even when a field is applied to sites of minimum coordination number. 

The preceding analysis can be generalised to a number of other situations. Consider 
an Ising model with interactions (1) on a hierarchical lattice constructed by assembling 
B bonds, of which L are attached to the top and L to the bottom vertices of the bond 
of next higher order (B = 4, L = 2 in figure 1). For J = 0 the dominant susceptibility 
singularity is of the form 

AlhI’, ( 5 )  

p = (In B/ln L )  -2. (6) 
If p is an even integer a term proportional to h P  lnlhl must be added to ( 5 ) .  For p s 0 
the GKS inequalities can be used to show that the susceptibility continues to diverge 
for 0 < J < J,. Since 

where A is, in general, a constant plus a periodic function of lnlh I, and 

p = ( 2 - d ) / ( d  - 1) (7) 
(independent of the linear scale change 6 )  for the Migdal-Kadanoff scheme applied 
as an approximation to a d-dimensional hypercubic lattice, we see that a divergent 
susceptibility is present for d 3 2. 

A similar analysis can be carried out at infinite temperature (J = 0) for various 
other models, such as n-vector models. However, the GKS inequalities needed to 
demonstrate a divergent x at finite temperatures have only been proved for n = 2  
(Monroe and Pearce 1979). 

One of us (MK) thanks Dr V Trutzer for useful discussions. This research has been 
supported by NSF grants DMR 78-20394 and DMR 81-08310. 
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